



SUMMER ASYAGO

19-21 o 22-24 luglio 2021

Il progetto è riconosciuto come attività di PCTO e sarà svolto in streaming

L'inizio del 25[^] ciclo solare dovrebbe permettere l'osservazione di macchie e protuberanze solari e dar modo di approfondire le relazioni tra l'attività solare e il clima terrestre, elaborare le immagini del Sole e ottenere dei dati scientifici.

Durante la prima parte della notte, sarà possibile (meteo permettendo) effettuare osservazioni di fotometria e spettroscopia coi telescopi di Asiago e ricavare la variazione luminosa e la composizione chimica di astri come supernovae e comete.

19 luglio 2021, ore 11.00 – 14.00:

osservazione dello stage
osservazione del Sole (macchie e protuberanze), Venere e Mercurio*
elaborazione delle immagini raccolte. V. Oldani
breve lezione sulla struttura e l'evoluzione della nostra stella. P. Ochner

19 luglio, ore 21.00 – 24.00

osservazioni ai telescopi: fotometria e spettroscopia di stelle e comete**
elaborazioni delle immagini e calcolo delle magnitudini stellari. A. Reguitti
lezione: Rosetta a caccia di una cometa. M. Lazzarin

20 luglio, ore 11.00 – 14.00

osservazione del Sole (macchie e protuberanze), Venere e Mercurio*
analisi delle immagini e confronto con i dati del giorno precedente. V. Oldani
lezione sulle stelle binarie. A. Siviero

20 luglio, ore 21.00 – 24.00

osservazioni ai telescopi: fotometria e spettroscopia di supernovae e comete**
analisi dei dati e confronto con quelli della notte precedente
calcolo della quantità di nichel presente nei resti di una supernova attraverso l'emissione luminosa prodotta dal suo decadimento radioattivo. I. Salmaso

21 luglio 2021, ore 11.00 – 14.00:

breve storia dell'astrofisica. M. Realdi laboratorio sulle meridiane solari. C. Sigismondi lezione sull'evoluzione stellare. I. Salmaso

21 luglio, ore 21.00 – 24.00

preparazione alla relazione finale

22 luglio 2021, ore 11.00 - 14.00:

osservazione dello stage
osservazione del Sole (macchie e protuberanze), Venere e Mercurio*
elaborazione delle immagini raccolte. V. Oldani
breve lezione sulla struttura e l'evoluzione della nostra stella. P. Ochner

22 luglio, ore 21.00 – 24.00

osservazioni ai telescopi: fotometria e spettroscopia di stelle e comete**
elaborazioni delle immagini e calcolo delle magnitudini stellari. A. Reguitti
lezione sull'evoluzione stellare. I. Salmaso

23 luglio, ore 11.00 – 14.00

osservazione del Sole (macchie e protuberanze), Venere e Mercurio*
analisi delle immagini e confronto con i dati del giorno precedente. V. Oldani
lezione sulle stelle binarie. A. Siviero

23 luglio, ore 21.00 – 24.00

osservazioni ai telescopi: fotometria e spettroscopia di supernovae e comete**
analisi dei dati e confronto con quelli della notte precedente
calcolo della quantità di nichel presente nei resti di una supernova attraverso
l'emissione luminosa prodotta dal suo decadimento radioattivo. A. Reguitti

24 luglio 2021, ore 11.00 – 14.00:

le comete: messaggeri dal passato. F. Manzini laboratorio sulle meridiane solari. C. Sigismondi breve storia dell'astrofisica. M. Realdi

24 luglio, ore 21.00 – 24.00

preparazione alla relazione finale

* In caso di maltempo le elaborazioni verranno svolte con materiale d'archivio

** Il programma osservativo verrà stilato il giorno stesso in base alle priorità osservative e alle condizioni meteorologiche. In caso di maltempo verrà svolto il laboratorio I colori delle stelle

L'obiettivo di questo percorso è di introdurre gli studenti all'osservazione astronomica e di permettere loro di usare degli strumenti software per elaborare le immagini e di svolgere l'analisi dei dati ottenuti dalle osservazioni

Per gli studenti che vorranno produrre, singolarmente o in gruppi di massimo 3 persone, una relazione riguardo all'attività svolta verranno corrisposte altre 5 ore valide come attività di PCTO

Affiliazioni dei relatori: Università di Padova, INAF - Osservatorio Astronomico di Padova, ICRA e Stazione Astronomica di Sozzago

Gli studenti dovranno aver installato sul proprio pc i seguenti software:

- Foglio di calcolo
- Astroart: http://www.msbsoftware.it/AA7DemoSetup-Comp.zip
- *Gimp:*https://download.gimp.org/mirror/pub/gimp/v2.10/windows/gimp-2.10.22-setup.exe
- SAOImageDS9: https://sites.google.com/cfa.harvard.edu/saoimageds9
- Stellarium: www.stellarium.org
- Aladin Sky Atlas Desktop: https://aladin.u-strasbq.fr/

Iscrizioni attraverso il portale: https://www.unipd.it/pcto